Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.146
Filtrar
1.
J Med Chem ; 67(8): 6658-6672, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38569135

RESUMO

BRD4 is associated with a variety of human diseases, including breast cancer. The crucial roles of amino-terminal bromodomains (BDs) of BRD4 in binding with acetylated histones to regulate oncogene expression make them promising drug targets. However, adverse events impede the development of the BD inhibitors. BRD4 adopts an extraterminal (ET) domain, which recruits proteins to drive oncogene expression. We discovered a peptide inhibitor PiET targeting the ET domain to disrupt BRD4/JMJD6 interaction, a protein complex critical in oncogene expression and breast cancer. The cell-permeable form of PiET, TAT-PiET, and PROTAC-modified TAT-PiET, TAT-PiET-PROTAC, potently inhibits the expression of BRD4/JMJD6 target genes and breast cancer cell growth. Combination therapy with TAT-PiET/TAT-PiET-PROTAC and JQ1, iJMJD6, or Fulvestrant exhibits synergistic effects. TAT-PiET or TAT-PiET-PROTAC treatment overcomes endocrine therapy resistance in ERα-positive breast cancer cells. Taken together, we demonstrated that targeting the ET domain is effective in suppressing breast cancer, providing a therapeutic avenue in the clinic.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Proliferação de Células , Fatores de Transcrição , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Proliferação de Células/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Linhagem Celular Tumoral , Camundongos , Domínios Proteicos , Camundongos Nus , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo
2.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664416

RESUMO

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Assuntos
Proteína p300 Associada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/antagonistas & inibidores , Linhagem Celular Tumoral , Redes Reguladoras de Genes/efeitos dos fármacos , Animais , Domínios Proteicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Antineoplásicos/farmacologia
3.
Sci Rep ; 14(1): 9058, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643174

RESUMO

Activity cliffs (ACs) are pairs of structurally similar molecules with significantly different affinities for a biotarget, posing a challenge in computer-assisted drug discovery. This study focuses on protein kinases, significant therapeutic targets, with some exhibiting ACs while others do not despite numerous inhibitors. The hypothesis that the presence of ACs is dependent on the target protein and its complete structural context is explored. Machine learning models were developed to link protein properties to ACs, revealing specific tripeptide sequences and overall protein properties as critical factors in ACs occurrence. The study highlights the importance of considering the entire protein matrix rather than just the binding site in understanding ACs. This research provides valuable insights for drug discovery and design, paving the way for addressing ACs-related challenges in modern computational approaches.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Sítios de Ligação , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia
4.
J Phys Chem B ; 128(15): 3631-3642, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38578072

RESUMO

Parallel cascade selection molecular dynamics (PaCS-MD) is an enhanced conformational sampling method conducted as a "repetition of time leaps in parallel worlds", comprising cycles of multiple molecular dynamics (MD) simulations performed in parallel and selection of the initial structures of MDs for the next cycle. We developed PaCS-Toolkit, an optimized software utility enabling the use of different MD software and trajectory analysis tools to facilitate the execution of the PaCS-MD simulation and analyze the obtained trajectories, including the preparation for the subsequent construction of the Markov state model. PaCS-Toolkit is coded with Python, is compatible with various computing environments, and allows for easy customization by editing the configuration file and specifying the MD software and analysis tools to be used. We present the software design of PaCS-Toolkit and demonstrate applications of PaCS-MD variations: original targeted PaCS-MD to peptide folding; rmsdPaCS-MD to protein domain motion; and dissociation PaCS-MD to ligand dissociation from adenosine A2A receptor.


Assuntos
Proteínas de Transporte , Simulação de Dinâmica Molecular , Conformação Proteica , Software , Domínios Proteicos
5.
Cell Rep ; 43(4): 114110, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607912

RESUMO

Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Lactococcus lactis , Pinças Ópticas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Lactococcus lactis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ligação Proteica , Domínios Proteicos , Imagem Individual de Molécula , Estabilidade Proteica , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química
6.
Cell Rep ; 43(4): 114090, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607915

RESUMO

Gene repression by the Polycomb pathway is essential for metazoan development. Polycomb domains, characterized by trimethylation of histone H3 lysine 27 (H3K27me3), carry the memory of repression and hence need to be maintained to counter the dilution of parental H3K27me3 with unmodified H3 during replication. Yet, how locus-specific H3K27me3 is maintained through replication is unclear. To understand H3K27me3 recovery post-replication, we first define nucleation sites within each Polycomb domain in mouse embryonic stem cells. To map dynamics of H3K27me3 domains across the cell cycle, we develop CUT&Flow (coupling cleavage under target and tagmentation with flow cytometry). We show that post-replication recovery of Polycomb domains occurs by nucleation and spreading, using the same nucleation sites used during de novo domain formation. By using Polycomb repressive complex 2 (PRC2) subunit-specific inhibitors, we find that PRC2 targets nucleation sites post-replication independent of pre-existing H3K27me3. Thus, competition between H3K27me3 deposition and nucleosome turnover drives both de novo domain formation and maintenance during every cell cycle.


Assuntos
Ciclo Celular , Histonas , Complexo Repressor Polycomb 2 , Animais , Camundongos , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Metilação , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Domínios Proteicos , Nucleossomos/metabolismo
7.
Plant Cell Rep ; 43(5): 121, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635077

RESUMO

KEY MESSAGE: FKF1 dimerization is crucial for proper FT levels to fine-tune flowering time. Attenuating FKF1 homodimerization increased CO abundance by enhancing its COP1 binding, thereby accelerating flowering under long days. In Arabidopsis (Arabidopsis thaliana), the blue-light photoreceptor FKF1 (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1) plays a key role in inducing the expression of FLOWERING LOCUS T (FT), encoding the main florigenic signal in plants, in the late afternoon under long-day conditions (LDs) by forming dimers with FT regulators. Although structural studies have unveiled a variant of FKF1 (FKF1 I160R) that disrupts homodimer formation in vitro, the mechanism by which disrupted FKF1 homodimer formation regulates flowering time remains elusive. In this study, we determined that the attenuation of FKF1 homodimer formation enhances FT expression in the evening by promoting the increased stability of CONSTANS (CO), a primary activator of FT, in the afternoon, thereby contributing to early flowering. In contrast to wild-type FKF1, introducing the FKF1 I160R variant into the fkf1 mutant led to increased FT expression under LDs. In addition, the FKF1 I160R variant exhibited diminished dimerization with FKF1, while its interaction with GIGANTEA (GI), a modulator of FKF1 function, was enhanced under LDs. Furthermore, the FKF1 I160R variant increased the level of CO in the afternoon under LDs by enhancing its binding to COP1, an E3 ubiquitin ligase responsible for CO degradation. These findings suggest that the regulation of FKF1 homodimerization and heterodimerization allows plants to finely adjust FT expression levels around dusk by modulating its interactions with GI and COP1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dimerização , 60440 , Domínios Proteicos , Reprodução
8.
Sci Rep ; 14(1): 8994, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637678

RESUMO

Type I secretion systems (T1SS) facilitate the secretion of substrates in one step across both membranes of Gram-negative bacteria. A prime example is the hemolysin T1SS which secretes the toxin HlyA. Secretion is energized by the ABC transporter HlyB, which forms a complex together with the membrane fusion protein HlyD and the outer membrane protein TolC. HlyB features three domains: an N-terminal C39 peptidase-like domain (CLD), a transmembrane domain (TMD) and a C-terminal nucleotide binding domain (NBD). Here, we created chimeric transporters by swapping one or more domains of HlyB with the respective domain(s) of RtxB, a HlyB homolog from Kingella kingae. We tested all chimeric transporters for their ability to secrete pro-HlyA when co-expressed with HlyD. The CLD proved to be most critical, as a substitution abolished secretion. Swapping only the TMD or NBD reduced the secretion efficiency, while a simultaneous exchange abolished secretion. These results indicate that the CLD is the most critical secretion determinant, while TMD and NBD might possess additional recognition or interaction sites. This mode of recognition represents a hierarchical and extreme unusual case of substrate recognition for ABC transporters and optimal secretion requires a tight interplay between all domains.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Escherichia coli , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Domínios Proteicos , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/metabolismo
9.
Elife ; 132024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655849

RESUMO

Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.


PURA syndrome is a neurodevelopmental disorder that affects about 650 patients worldwide, resulting in a range of symptoms including neurodevelopmental delays, intellectual disability, muscle weakness, seizures, and eating difficulties. The condition is caused by a mutated gene that codes for a protein called PURA. PURA binds RNA ­ the molecule that carries genetic information so it can be translated into proteins ­ and has roles in regulating the production of new proteins. Contrary to other conditions that result from mutations in a single gene, PURA syndrome patients show 'high penetrance', meaning almost every reported mutation in the gene leads to symptoms. Proske, Janowski et al. wanted to understand the molecular basis for this high penetrance. To find out more, the researchers first examined how patient mutations affected the location of the PURA in the cell, using human cells grown in the laboratory. Normally, PURA travels to P-bodies, which are groupings of RNA and proteins involved in regulating which genes get translated into proteins. The researchers found that in cells carrying PURA syndrome mutations, PURA failed to move adequately to P-bodies. To find out how this 'mislocalization' might happen, Proske, Janowski et al. tested how different mutations affected the three-dimensional folding of PURA. These analyses showed that the mutations impair the protein's folding and thereby disrupt PURA's ability to bind RNA, which may explain why mutant PURA cannot localize correctly. Proske, Janowski et al. describe the molecular abnormalities of PURA underlying this disorder and show how molecular analysis of patient mutations can reveal the mechanisms of a disease at the cell level. The results show that the impact of mutations on the structural integrity of the protein, which affects its ability to bind RNA, are likely key to the symptoms of the syndrome. Additionally, their approach used establishes a way to predict and test mutations that will cause PURA syndrome. This may help to develop diagnostic tools for this condition.


Assuntos
Mutação , Humanos , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Conformação Proteica , Multimerização Proteica
10.
Cells ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667313

RESUMO

The cellular transmembrane protein MARCH8 impedes the incorporation of various viral envelope glycoproteins, such as the HIV-1 envelope glycoprotein (Env) and vesicular stomatitis virus G-glycoprotein (VSV-G), into virions by downregulating them from the surface of virus-producing cells. This downregulation significantly reduces the efficiency of virus infection. In this study, we aimed to further characterize this host protein by investigating its species specificity and the domains responsible for its antiviral activity, as well as its ability to inhibit cell-to-cell HIV-1 infection. We found that the antiviral function of MARCH8 is well conserved in the rhesus macaque, mouse, and bovine versions. The RING-CH domains of these versions are functionally important for inhibiting HIV-1 Env and VSV-G-pseudovirus infection, whereas tyrosine motifs are crucial for the former only, consistent with findings in human MARCH8. Through analysis of chimeric proteins between MARCH8 and non-antiviral MARCH3, we determined that both the N-terminal and C-terminal cytoplasmic tails, as well as presumably the N-terminal transmembrane domain, of MARCH8 are critical for its antiviral activity. Notably, we found that MARCH8 is unable to block cell-to-cell HIV-1 infection, likely due to its insufficient downregulation of Env. These findings offer further insights into understanding the biology of this antiviral transmembrane protein.


Assuntos
HIV-1 , Proteínas de Membrana , Humanos , Animais , Proteínas de Membrana/metabolismo , Células HEK293 , Ubiquitina-Proteína Ligases/metabolismo , Camundongos , Bovinos , Macaca mulatta , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Antivirais/farmacologia , Domínios Proteicos , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
11.
Cell Rep ; 43(4): 114015, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568810

RESUMO

The type VI secretion system (T6SS), a widespread protein delivery apparatus, plays a role in bacterial competition by delivering toxic effectors into neighboring cells. Identifying new T6SS effectors and deciphering the mechanism that governs their secretion remain major challenges. Here, we report two orphan antibacterial T6SS effectors in the pathogen Pantoea agglomerans (Pa). These effectors share an N-terminal domain, Pantoea type six (PIX), that defines a widespread class of polymorphic T6SS effectors in Enterobacterales. We show that the PIX domain is necessary and sufficient for T6SS-mediated effector secretion and that PIX binds to a specialized Pa VgrG protein outside its C-terminal toxic domain. Our findings underline the importance of identifying and characterizing delivery domains in polymorphic toxin classes as a tool to reveal effectors and shed light on effector delivery mechanisms.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Pantoea/metabolismo , Ligação Proteica
12.
Science ; 384(6692): 227-232, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603484

RESUMO

DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of Escherichia coli DNA gyrase bound to a negatively supercoiled minicircle DNA. We show how DNA gyrase captures a DNA crossover, revealing both conserved molecular grooves that accommodate the DNA helices. Together with molecular tweezer experiments, the structure shows that the DNA crossover is of positive chirality, reconciling the binding step of gyrase-mediated DNA relaxation and supercoiling in a single structure.


Assuntos
DNA Girase , DNA Super-Helicoidal , DNA , Proteínas de Escherichia coli , Escherichia coli , Microscopia Crioeletrônica , DNA/química , DNA Girase/química , DNA Girase/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Domínios Proteicos
13.
Nat Commun ; 15(1): 3205, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615015

RESUMO

Defence against pathogens relies on intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs) in plants. Hormone signaling including abscisic acid (ABA) pathways are activated by NLRs and play pivotal roles in defence against different pathogens. However, little is known about how hormone signaling pathways are activated by plant immune receptors. Here, we report that a plant NLR Sw-5b mimics the behavior of the ABA receptor and directly employs the ABA central regulator PP2C-SnRK2 complex to activate an ABA-dependent defence against viral pathogens. PP2C4 interacts with and constitutively inhibits SnRK2.3/2.4. Behaving in a similar manner as the ABA receptor, pathogen effector ligand recognition triggers the conformational change of Sw-5b NLR that enables binding to PP2C4 via the NB domain. This receptor-PP2C4 binding interferes with the interaction between PP2C4 and SnRK2.3/2.4, thereby releasing SnRK2.3/2.4 from PP2C4 inhibition to activate an ABA-specific antiviral immunity. These findings provide important insights into the activation of hormone signaling pathways by plant immune receptors.


Assuntos
Ácido Abscísico , Transdução de Sinais , Inibição Psicológica , Domínios Proteicos , Hormônios
14.
J Phys Chem B ; 128(16): 3929-3936, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619541

RESUMO

Yersinia pestis, the causative agent of plague, is capable of evading the human immune system response by recruiting the plasma circulating vitronectin proteins, which act as a shield and avoid its lysis. Vitronectin recruitment is mediated by its interaction with the bacterial transmembrane protein Ail, protruding from the Y. pestis outer membrane. By using all-atom long-scale molecular dynamic simulations of Ail embedded in a realistic model of the bacterial membrane, we have shown that vitronectin forms a stable complex, mediated by interactions between the disordered moieties of the two proteins. The main amino acids driving the complexation have also been evidenced, thus favoring the possible rational design of specific peptides which, by inhibiting vitronectin recruitment, could act as original antibacterial agents.


Assuntos
Proteínas da Membrana Bacteriana Externa , Simulação de Dinâmica Molecular , Vitronectina , Vitronectina/química , Vitronectina/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Humanos , Yersinia pestis/química , Yersinia pestis/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Domínios Proteicos , Ligação Proteica
15.
Commun Biol ; 7(1): 447, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605212

RESUMO

Protein evolution is constrained by structure and function, creating patterns in residue conservation that are routinely exploited to predict structure and other features. Similar constraints should affect variation across individuals, but it is only with the growth of human population sequencing that this has been tested at scale. Now, human population constraint has established applications in pathogenicity prediction, but it has not yet been explored for structural inference. Here, we map 2.4 million population variants to 5885 protein families and quantify residue-level constraint with a new Missense Enrichment Score (MES). Analysis of 61,214 structures from the PDB spanning 3661 families shows that missense depleted sites are enriched in buried residues or those involved in small-molecule or protein binding. MES is complementary to evolutionary conservation and a combined analysis allows a new classification of residues according to a conservation plane. This approach finds functional residues that are evolutionarily diverse, which can be related to specificity, as well as family-wide conserved sites that are critical for folding or function. We also find a possible contrast between lethal and non-lethal pathogenic sites, and a surprising clinical variant hot spot at a subset of missense enriched positions.


Assuntos
Proteínas , Humanos , Domínios Proteicos , Proteínas/metabolismo , Ligação Proteica , Sequência de Bases
16.
J Chem Inf Model ; 64(8): 3350-3359, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38566451

RESUMO

The B domain of protein A (BdpA), a small three-helix bundle, folds on a time scale of a few microseconds with heterogeneous native and unfolded states. It is widely used as a model for understanding protein folding mechanisms. In this work, we use structure-based models (SBMs) and atomistic simulations to comprehensively investigate how BdpA folding is associated with the formation of its secondary structure. The energy landscape visualization method (ELViM) was used to characterize the pathways that connect the folded and unfolded states of BdpA as well as the sets of structures displaying specific ellipticity patterns. We show that the native state conformational diversity is due mainly to the conformational variability of helix I. Helices I, II, and III occur in a weakly correlated manner, with Spearman's rank correlation coefficients of 0.1539 (I and II), 0.1259 (I and III), and 0.2561 (II and III). These results, therefore, suggest the highest cooperativity between helices II and III. Our results allow the clustering of partially folded structures of folding of the B domain of protein A on the basis of its secondary structure, paving the way to an understanding of environmental factors in the relative stability of the basins of the folding ensemble, which are illustrated by the structural dependency of the protein hydration structures, as computed with minimum-distance distribution functions.


Assuntos
Simulação de Dinâmica Molecular , Domínios Proteicos , Dobramento de Proteína , Proteína Estafilocócica A , Água , Água/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Conformação Proteica em alfa-Hélice , Modelos Moleculares , Termodinâmica
17.
Anal Chim Acta ; 1303: 342439, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609254

RESUMO

Advanced biopharmaceutical manufacturing requires novel process analytical technologies for the rapid and sensitive assessment of the higher-order structures of therapeutic proteins. However, conventional physicochemical analyses of denatured proteins have limitations in terms of sensitivity, throughput, analytical resolution, and real-time monitoring capacity. Although probe-based sensing can overcome these limitations, typical non-specific probes lack analytical resolution and provide little to no information regarding which parts of the protein structure have been collapsed. To meet these analytical demands, we generated biosensing probes derived from artificial proteins that could specifically recognize the higher-order structural changes in antibodies at the protein domain level. Biopanning of phage-displayed protein libraries generated artificial proteins that bound to a denatured antibody domain, but not its natively folded structure, with nanomolar affinity. The protein probes not only recognized the higher-order structural changes in intact IgGs but also distinguished between the denatured antibody domains. These domain-specific probes were used to generate response contour plots to visualize the antibody denaturation caused by various process parameters, such as pH, temperature, and holding time for acid elution and virus inactivation. These protein probes can be combined with established analytical techniques, such as surface plasmon resonance for real-time monitoring or plate-based assays for high-throughput analysis, to aid in the development of new analytical technologies for the process optimization and monitoring of antibody manufacturing.


Assuntos
Anticorpos , Produtos Biológicos , Controle de Qualidade , Domínios Proteicos , Técnicas de Visualização da Superfície Celular
18.
Biol Pharm Bull ; 47(3): 580-590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432913

RESUMO

There are 48 nuclear receptors in the human genome, and many members of this superfamily have been implicated in human diseases. The NR4A nuclear receptor family consisting of three members, NR4A1, NR4A2, and NR4A3 (formerly annotated as Nur77, Nurr1, and NOR1, respectively), are still orphan receptors but exert pathological effects on immune-related and neurological diseases. We previously reported that prostaglandin A1 (PGA1) and prostaglandin A2 (PGA2) are potent activators of NR4A3, which bind directly to the ligand-binding domain (LBD) of the receptor. Recently, the co-crystallographic structures of NR4A2-LBD bound to PGA1 and PGA2 were reported, followed by reports of the neuroprotective effects of these possible endogenous ligands in mouse models of Parkinson's disease. Based on these structures, we modeled the binding structures of the other two members (NR4A1 and NR4A3) with these potential endogenous ligands using a template-based modeling method, and reviewed the similarity and diversity of ligand-binding mechanisms in the nuclear receptor family.


Assuntos
Doença de Parkinson , Humanos , Animais , Camundongos , Ligantes , Modelos Animais de Doenças , Domínios Proteicos , Prostaglandinas
19.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448163

RESUMO

Endoplasmic reticulum (ER) proteins are degraded by proteasomes in the cytosol through ER-associated degradation (ERAD). This process involves the retrotranslocation of substrates across the ER membrane, their ubiquitination, and membrane extraction by the Cdc48/Npl4/Ufd1 ATPase complex prior to delivery to proteasomes for degradation. How the presence of a folded luminal domain affects substrate retrotranslocation and this event is coordinated with subsequent ERAD steps remains unknown. Here, using a model substrate with a folded luminal domain, we showed that Cdc48 ATPase activity is sufficient to drive substrate retrotranslocation independently of ERAD membrane components. However, the complete degradation of the folded luminal domain required substrate-tight coupling of retrotranslocation and proteasomal degradation, which was ensured by the derlin Dfm1. Mutations in Dfm1 intramembrane rhomboid-like or cytosolic Cdc48-binding regions resulted in partial degradation of the substrate with accumulation of its folded domain. Our study revealed Dfm1 as a critical regulator of Cdc48-driven retrotranslocation and highlights the importance of coordinating substrate retrotranslocation and degradation during ERAD.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Citosol , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465747

RESUMO

Voltage-gated sodium channels (Naáµ¥) are membrane proteins which open to facilitate the inward flux of sodium ions into excitable cells. In response to stimuli, Naáµ¥ channels transition from the resting, closed state to an open, conductive state, before rapidly inactivating. Dysregulation of this functional cycle due to mutations causes diseases including epilepsy, pain conditions, and cardiac disorders, making Naáµ¥ channels a significant pharmacological target. Phosphoinositides are important lipid cofactors for ion channel function. The phosphoinositide PI(4,5)P2 decreases Naáµ¥1.4 activity by increasing the difficulty of channel opening, accelerating fast inactivation and slowing recovery from fast inactivation. Using multiscale molecular dynamics simulations, we show that PI(4,5)P2 binds stably to inactivated Naáµ¥ at a conserved site within the DIV S4-S5 linker, which couples the voltage-sensing domain (VSD) to the pore. As the Naáµ¥ C-terminal domain is proposed to also bind here during recovery from inactivation, we hypothesize that PI(4,5)P2 prolongs inactivation by competitively binding to this site. In atomistic simulations, PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, responsible for fast inactivation, slowing the conformational changes required for the channel to recover to the resting state. We further show that in a resting state Naáµ¥ model, phosphoinositides bind to VSD gating charges, which may anchor them and impede VSD activation. Our results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the rate of recovery from inactivation, an important step for the development of novel therapies to treat Naáµ¥-related diseases.


Assuntos
Ativação do Canal Iônico , Canais de Sódio Disparados por Voltagem , Ativação do Canal Iônico/fisiologia , Domínios Proteicos , Canais Iônicos , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...